The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle.

نویسندگان

  • Eric A Welsh
  • Michelle Liberton
  • Jana Stöckel
  • Thomas Loh
  • Thanura Elvitigala
  • Chunyan Wang
  • Aye Wollam
  • Robert S Fulton
  • Sandra W Clifton
  • Jon M Jacobs
  • Rajeev Aurora
  • Bijoy K Ghosh
  • Louis A Sherman
  • Richard D Smith
  • Richard K Wilson
  • Himadri B Pakrasi
چکیده

Unicellular cyanobacteria have recently been recognized for their contributions to nitrogen fixation in marine environments, a function previously thought to be filled mainly by filamentous cyanobacteria such as Trichodesmium. To begin a systems level analysis of the physiology of the unicellular N(2)-fixing microbes, we have sequenced to completion the genome of Cyanothece sp. ATCC 51142, the first such organism. Cyanothece 51142 performs oxygenic photosynthesis and nitrogen fixation, separating these two incompatible processes temporally within the same cell, while concomitantly accumulating metabolic products in inclusion bodies that are later mobilized as part of a robust diurnal cycle. The 5,460,377-bp Cyanothece 51142 genome has a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of a linear element in the genome of a photosynthetic bacterium. On the 429,701-bp linear chromosome is a cluster of genes for enzymes involved in pyruvate metabolism, suggesting an important role for the linear chromosome in fermentative processes. The annotation of the genome was significantly aided by simultaneous global proteomic studies of this organism. Compared with other nitrogen-fixing cyanobacteria, Cyanothece 51142 contains the largest intact contiguous cluster of nitrogen fixation-related genes. We discuss the implications of such an organization on the regulation of nitrogen fixation. The genome sequence provides important information regarding the ability of Cyanothece 51142 to accomplish metabolic compartmentalization and energy storage, as well as how a unicellular bacterium balances multiple, often incompatible, processes in a single cell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142

Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowl...

متن کامل

Better living through cyanothece - unicellular diazotrophic cyanobacteria with highly versatile metabolic systems.

Cyanothece sp. ATCC 51142 is a unicellular, diazotrophic cyanobacterium with a versatile metabolism and very pronounced diurnal rhythms. Since nitrogen fixation is exquisitely sensitive to oxygen, Cyanotheceutilizes temporal regulation to accommodate these incompatible processes in a single cell. When grown under 12 h light-dark (LD) periods, it performs photosynthesis during the day and N(2) f...

متن کامل

Influence of mixotrophic growth on rhythmic oscillations in expression of metabolic pathways in diazotrophic cyanobacterium Cyanothece sp. ATCC 51142.

This study investigates the influence of mixotrophy on physiology and metabolism by analysis of global gene expression in unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 (henceforth Cyanothece 51142). It was found that Cyanothece 51142 continues to oscillate between photosynthesis and respiration in continuous light under mixotrophy with cycle time of ∼ 13 h. Mixotrophy is mar...

متن کامل

The manganese stabilizing protein (MSP) and the control of O2 evolution in the unicellular, diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142.

The unicellular diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142 temporally separates N2 fixation from photosynthesis. To better understand the processes by which photosynthesis is regulated, we have analyzed Photosystem (PS) II O2 evolution and the PSII lumenal proteins, especially the Mn stabilizing protein (MSP). We describe a procedure using glycine betaine to isolate photosynthetic m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 39  شماره 

صفحات  -

تاریخ انتشار 2008